27,189 research outputs found

    Predictions for Impurity-Induced Tc Suppression in the High-Temperature Superconductors

    Full text link
    We address the question of whether anisotropic superconductivity is compatible with the evidently weak sensitivity of the critical temperature Tc to sample quality in the high-Tc copper oxides. We examine this issue quantitatively by solving the strong-coupling Eliashberg equations numerically as well as analytically for s-wave impurity scattering within the second Born approximation. For pairing interactions with a characteristically low energy scale, we find an approximately universal dependence of the d-wave superconducting transition temperature on the planar residual resistivity which is independent of the details of the microscopic pairing. These results, in conjunction with future systematic experiments, should help elucidate the symmetry of the order parameter in the cuprates.Comment: 13 pages, 4 figures upon request, revtex version

    An application of multiattribute decision analysis to the Space Station Freedom program. Case study: Automation and robotics technology evaluation

    Get PDF
    The results are described of an application of multiattribute analysis to the evaluation of high leverage prototyping technologies in the automation and robotics (A and R) areas that might contribute to the Space Station (SS) Freedom baseline design. An implication is that high leverage prototyping is beneficial to the SS Freedom Program as a means for transferring technology from the advanced development program to the baseline program. The process also highlights the tradeoffs to be made between subsidizing high value, low risk technology development versus high value, high risk technology developments. Twenty one A and R Technology tasks spanning a diverse array of technical concepts were evaluated using multiattribute decision analysis. Because of large uncertainties associated with characterizing the technologies, the methodology was modified to incorporate uncertainty. Eight attributes affected the rankings: initial cost, operation cost, crew productivity, safety, resource requirements, growth potential, and spinoff potential. The four attributes of initial cost, operations cost, crew productivity, and safety affected the rankings the most

    Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background

    Get PDF
    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and foreground emission is a problem of central importance for the extraction of cosmological information from the cosmic microwave background. We develop a Monte Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an identity for the Bayesian posterior as a marginalization over unknowns. Maximization of the posterior involves the computation of expectation values as a sample average from maps of the cosmic microwave background and foregrounds given some current estimate of the power spectrum or cosmological model, and some assumed statistical characterization of the foregrounds. Maps of the CMB are sampled by a linear transform of a Gaussian white noise process, implemented numerically with conjugate gradient descent. For time series data with N_{t} samples, and N pixels on the sphere, the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}], where K is a prefactor determined by the convergence rate of conjugate gradient descent. Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed, region.Comment: submitted to Ap

    Can Maxwell's equations be obtained from the continuity equation?

    Full text link
    We formulate an existence theorem that states that given localized scalar and vector time-dependent sources satisfying the continuity equation, there exist two retarded fields that satisfy a set of four field equations. If the theorem is applied to the usual electromagnetic charge and current densities, the retarded fields are identified with the electric and magnetic fields and the associated field equations with Maxwell's equations. This application of the theorem suggests that charge conservation can be considered to be the fundamental assumption underlying Maxwell's equations.Comment: 14 pages. See the comment: "O. D. Jefimenko, Causal equations for electric and magnetic fields and Maxwell's equations: comment on a paper by Heras [Am. J. Phys. 76, 101 (2008)].

    A time varying speed of light as a solution to cosmological puzzles

    Get PDF
    We consider the cosmological implications of light travelling faster in the early Universe. We propose a prescription for deriving corrections to the cosmological evolution equations while the speed of light cc is changing. We then show how the horizon, flatness, and cosmological constant problems may be solved. We also study cosmological perturbations in this scenario and show how one may solve the homogeneity and isotropy problems. As it stands, our scenario appears to most easily produce extreme homogeneity, requiring structure to be produced in the Standard Big Bang epoch. Producing significant perturbations during the earlier epoch would require a rather careful design of the function c(t)c(t). The large entropy inside the horizon nowadays can also be accounted for in this scenario.Comment: To be published in Physical Review D. Note added referring to John Moffat's early work on VSL theorie

    Finite Size Polyelectrolyte Bundles at Thermodynamic Equilibrium

    Full text link
    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite size aggregates

    Saturation and geometric scaling in DIS at small x

    Full text link
    We present various aspects of the saturation model which provides good description of inclusive and diffractive DIS at small x. The model uses parton saturation ideas to take into account unitarity requirements. A new scaling predicted by the model in the small x domain is successfully confronted with the data.Comment: Presented at New Trends in HERA Physics 2001, Ringberg Castle, Tegernsee, Germany, 17-22 June 2001, minor corrections, some references adde
    • …
    corecore